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Yosys
● Open source synthesis framework
● Multiple FPGA families
● ASIC synthesis, formal verification, …
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Yosys – new features
● ABC9 (Eddie Hung)
● New interface to ABC optimisation/mapping 

framework
● Improved timing-driven synthesis
● Sequential (flip-flop) optimisations
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Yosys – new features
● cxxrtl (whitequark)
● C++ “backend” similar to Verilator but built into 

Yosys
● Efficient handling of multiple clock domains, 

loops, etc
● Can be used for mixed-language sim
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Yosys – new features
● GHDL plugin (tgingold)
● Adds an open VHDL frontend
● Still experimental, but good language coverage
● Capable of building Microwatt, MiST SNES 

core, ...
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nextpnr
● Open source FPGA place and route, 

development started May 2018
● Multi-architecture, aimed at real-world FPGAs 

including advanced functionality
● Timing driven
● Python API for extensibility and experimentation
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Current Status
● Stable support for iCE40 and ECP5 devices
● Experimental Xilinx and generic Python deivce 

support
● Extensively tested up to ~100kLUT designs
● DDR3 controllers, Gigabit Ethernet, 64-bit SoCs
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Current Status
● Analytical and simulated annealing placers
● Two congestion-based routers
● Packing is per-architecture
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nextpnr-xilinx
● Current ongoing efforts to support Xilinx devices
● Not yet upstream
● RapidWright: UltraScale+, Vivado bitgen
● Project X-Ray: 7-series, FOSS bitgen
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nextpnr-xilinx
● Highly experimental, but can build complex 

designs
● Linux SoC with DDR3
● Main issue is runtime scaling for larger devices
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Inside nextpnr
● Architectures are code, not data
● Implement arbitrarily complex constraints to 

support real-world architectures
● Custom packing, DRC, bitstream generation, 

etc
● Multiple choices of placer and router
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Inside nextpnr
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router2
● New congestion driven router based on CRoute 

(Ghent University)
● Negotiated congestion, overlaps allowed during 

early phases
● Penalty for most congested wires
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router2
● Region-based parallelisation
● Arcs that don’t cross determined regions routed 

in their own thread
● Long arcs or arcs not containable to a bounding 

box are single-threaded
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router2 - parallelisation
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router2
● Parts of the router are arch-overrideable
● Architectures can choose to route (or try to route) 

some segments themselves 
● Used to speed-up constant routing for Xilinx FPGAs
● Scope to replace current pre-route clock routing 

pass
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router2
● Architectures can break arcs into segments to 

force use of dedicated resources
● Example use cases:

– UltraScale leaf clock buffers for high fanout signals
– Cross-SLR routing for SSI FPGAs
– Special-case IO/IP routing?
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router2 - segments

LUT

LUT

LUT

LUT

FF

LUT

LUT

LUT

LUT

FF

BUFCE_LEAF



  

20

RippleFPGA placer
● Routeability driven analytical placement
● Several heuristics to reduce routing congestion
● Avoids placement in congested areas
● Pack-and-place based on fine grain elements
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RippleFPGA placer
● Core similarities to existing HeAP placer
● Assign higher “area” to congested cells to 

spread them more
● Partition at start to improve initial placement



  

22

Hypergraph Partitioning
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Hypergraph Partitioning
● Not only useful for Ripple
● Logic Regioning (chiplet) partitioning for large 

FPGAs
● Parellelisation of various algorithms
● Multi-device designs?
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Fine-Grain Placement
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Future Work
● Finishing Ripple placer
● Improved timing constraints
● Retiming and resynthesis framework
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