

1

Yosys and nextpnr Update

David Shah
Griffith Research Ltd

2

Yosys
● Open source synthesis framework
● Multiple FPGA families
● ASIC synthesis, formal verification, …

3

Yosys – new features
● ABC9 (Eddie Hung)
● New interface to ABC optimisation/mapping

framework
● Improved timing-driven synthesis
● Sequential (flip-flop) optimisations

4

Yosys – new features
● cxxrtl (whitequark)
● C++ “backend” similar to Verilator but built into

Yosys
● Efficient handling of multiple clock domains,

loops, etc
● Can be used for mixed-language sim

5

Yosys – new features
● GHDL plugin (tgingold)
● Adds an open VHDL frontend
● Still experimental, but good language coverage
● Capable of building Microwatt, MiST SNES

core, ...

6

nextpnr
● Open source FPGA place and route,

development started May 2018
● Multi-architecture, aimed at real-world FPGAs

including advanced functionality
● Timing driven
● Python API for extensibility and experimentation

7

Current Status
● Stable support for iCE40 and ECP5 devices
● Experimental Xilinx and generic Python deivce

support
● Extensively tested up to ~100kLUT designs
● DDR3 controllers, Gigabit Ethernet, 64-bit SoCs

8

Current Status
● Analytical and simulated annealing placers
● Two congestion-based routers
● Packing is per-architecture

9

nextpnr-xilinx
● Current ongoing efforts to support Xilinx devices
● Not yet upstream
● RapidWright: UltraScale+, Vivado bitgen
● Project X-Ray: 7-series, FOSS bitgen

10

nextpnr-xilinx
● Highly experimental, but can build complex

designs
● Linux SoC with DDR3
● Main issue is runtime scaling for larger devices

11

nextpnr flow
Verilog

Yosys
(synthesis)

BLIF,
EDIF,

etc

Other FPGA PnR, ASIC, etc

nextpnr
(place and

route)

JSON

icestorm
iCE40
bitstream

trellis
ECP5
bitstream

RapidWright

Vivado UltraScale+
bitstream

asc

textcfg

JSON

dcp

Open Source

Closed Source

fasm
Xray

7-series
bitstream

RapidWright

12

Inside nextpnr
● Architectures are code, not data
● Implement arbitrarily complex constraints to

support real-world architectures
● Custom packing, DRC, bitstream generation,

etc
● Multiple choices of placer and router

13

Inside nextpnr

JSON Frontend Packer

Placer

Chip Data

Router

Design Export

Bitstream Gen

Bitstream

Timing Model

Timing Analysis

JSON backend

nextpnr

icestorm/Trellis/...

Yosys (synthesis)

Mapping rulesSynthesis & map

Optimisation

Verilog Frontend

Verilog design

14

router2
● New congestion driven router based on CRoute

(Ghent University)
● Negotiated congestion, overlaps allowed during

early phases
● Penalty for most congested wires

15

router2
● Region-based parallelisation
● Arcs that don’t cross determined regions routed

in their own thread
● Long arcs or arcs not containable to a bounding

box are single-threaded

16

router2 - parallelisation

17

router2
● Parts of the router are arch-overrideable
● Architectures can choose to route (or try to route)

some segments themselves
● Used to speed-up constant routing for Xilinx FPGAs
● Scope to replace current pre-route clock routing

pass

18

router2
● Architectures can break arcs into segments to

force use of dedicated resources
● Example use cases:

– UltraScale leaf clock buffers for high fanout signals
– Cross-SLR routing for SSI FPGAs
– Special-case IO/IP routing?

19

router2 - segments

LUT

LUT

LUT

LUT

FF

LUT

LUT

LUT

LUT

FF

BUFCE_LEAF

20

RippleFPGA placer
● Routeability driven analytical placement
● Several heuristics to reduce routing congestion
● Avoids placement in congested areas
● Pack-and-place based on fine grain elements

21

RippleFPGA placer
● Core similarities to existing HeAP placer
● Assign higher “area” to congested cells to

spread them more
● Partition at start to improve initial placement

22

Hypergraph Partitioning

23

Hypergraph Partitioning
● Not only useful for Ripple
● Logic Regioning (chiplet) partitioning for large

FPGAs
● Parellelisation of various algorithms
● Multi-device designs?

24

Fine-Grain Placement

SLICE

LUT4

LUT4 DFFLUT4

DFF
Carry

LUT4
+carry

LUT4
+carry

DFF

DFF

25

Future Work
● Finishing Ripple placer
● Improved timing constraints
● Retiming and resynthesis framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

