

1

OSHUG - Open FPGA
Toolchains

From Past to Present

David Shah
@fpga_dave

Symbiotic EDA

Slides: fpga.dev/oshug.pdf

https://fpga.dev/oshug.pdf

2

FPGA?
● Field Programmable Gate Array
● Chip containing user-programmable digital

logic
● Can be (re)programmed “in the field” - older

devices programmed once by literally burning
fuses

3

FPGA?

4

FPGA Logic
I0

I1

I2

I3

From
programmable

routing

Q
To
programmable
routing

LUT4I0

Look Up Table (LUT) – basic logic element of an FPGA

a K-input LUT has 2K bits of memory storing its function
e.g. 4-input AND: 1000 0000 0000 0000
 4-input OR: 1111 1111 1111 1110

5

FPGA Logic

CLK

D

From
programmable

routing

Q
To
programmable
routing

DFF

D-type flip flop (DFF) – basic storage element of an FPGA

D is stored at the rising or falling edge of CLK

Combine DFFs and LUTs to build sequential logic such as
state machines, counters, CPUs, ...

6

FPGA Routing

buffer

DFF output

horizontal wire 1

horizontal wire 2

vertical wire 1

vertical wire 2

previous LUT output

LUT input 0

X programmable config bit X

transistor – passes horizontally
when gate (bottom) is high

7

FPGA Structure

(vertical interconnect not shown for clarity)

Tile

Wires

8

FPGA Structure

LUT & DFF
(x8)

Routing
switchbox

9

FPGA Structure
● Modern FPGAs aren’t just LUTs and DFFs!
● Block RAM: dual port SRAM, usually 4-36 kbit
● DSP: multiplier and adders
● High speed IO blocks for DDR memory, HDMI, PCI

Express, etc
● Even CPUs! (Zynq ARM cores, Virtex-II Pro PPC)

10

FPGA Configuration

CLK

D Q

CLK

D Q

CLK

D Q

CLK

D Q

Config Clock

Config Data

LUT inputs

LUT output

2-input FPGA LUT, showing configuration shift register

mux

11

FPGA Configuration
● Logic and routing in a modern FPGA uses shift

register type structures for configurability
● The programming file for an FPGA, called a

bitstream, loads all of these shift registers
● Typical bitstreams comprised of commands, for both

loading configuration and other tasks such as
initialising block RAM

12

FPGA Configuration
● No (public) documents telling you what the bits

inside a bitstream actually do!
● Unlike most other kinds of programmable chip –

microcontrollers usually have register guides, etc
● Expectation is to use vendor-provided proprietary

design software

13

FPGA Toolchains
● FPGA designs are written in a hardwareD

description language (HDL), usually Verilog or
VHDL

● Also higher level frameworks such as
Migen/LiteX (Python based), SpinalHDL (Scala
based) – still generate Verilog though

14

Synthesis
module top(

input clk,
input a, s,
output reg q

);

always @(posedge clk)
if (s)

q <= 1;
else

q <= q ^ a;

endmodule

CLK

D Q

clk

s

1

a
q

Verilog Source

Elaborated Circuit

CLK

D Q

clk

s
a q

LUT2
1110

LUT2
0110

Mapped to 2-input LUTs

15

Placement

16

Routing

17

Open FPGA Flows
● Need to document bitstreams to build open source

tools
● Project Icestorm: bitstream documentation for iCE40

FPGAs by Clifford Wolf & Matthias Lasser
● Combined with Yosys & arachne-pnr to build the first

useful open FPGA flow
● arachne-pnr later replaced by nextpnr

18

iCE40 FPGAs
● 384 – 8k logic cells
● 1 logic cell: 4-input LUT, flipflop, carry logic for adders
● Up to 128kbit block RAM in 4kbit blocks
● 8 global networks to distribute clocks, resets and

clock enables to all tiles
● Ultra and UltraPlus parts have some extra features

19

iCE40 FPGAs

20

Project Icestorm
● 2019-02-23: Initial support for iCE40 Ultra devices.
● 2018-01-30: Released support for iCE40 UltraPlus devices.
● 2017-03-13: Released support for LP384 chips (in all package variants).
● 2016-02-07: Support for all package variants of LP1K, LP4K, LP8K and HX1K, HX4K, and HX8K.
● 2016-01-17: First release of IceTime timing analysis. Video: https://youtu.be/IG5CpFJRnOk
● 2015-12-27: Presentation of the IceStorm flow at 32C3 (Video on Youtube).
● 2015-07-19: Released support for 8k chips. Moved IceStorm source code to GitHub.
● 2015-05-27: We have a working fully Open Source flow with Yosys and Arachne-pnr! Video:

http://youtu.be/yUiNlmvVOq8
● 2015-04-13: Complete rewrite of IceUnpack, added IcePack, some major documentation updates
● 2015-03-22: First public release and short YouTube video demonstrating our work:

http://youtu.be/u1ZHcSNDQMM

Source: clifford.at/icestorm

21

Project Icestorm
● Manual analysis of bitstreams to determine commands
● Automatic creation of large numbers of bitstreams to

discover routing & functionality config bits
● Also built tools for packing/unpacking bitstreams,

generating databases for place-and-route
● First targetted LP/HX1K; then LP/HX 4K/8K; then

Ultra/UltraPlus

22

Yosys
● Open source Verilog synthesis framework
● Development started by Clifford Wolf in 2012
● Support for multiple FPGA families (iCE40, Xilinx 7-

series, ECP5, Microsemi) & ASIC synthesis
● Support for formal verification and many other tasks

23

Yosys
● Typical flow goes from Verilog to a synthesised circuit

containing LUTs, flipflops, etc in BLIF, EDIF or JSON
format

● Support for inferring block RAM from Verilog arrays
● Experimental support for iCE40 DSP inference from

multiplies & adds in Verilog

24

arachne-pnr
● First open source place-and-route tool for iCE40
● Developed by cseed in 2015 using Project Icestorm
● Fast, simple and lightweight – fulfilled its purpose well
● Tied to iCE40 & hard to port to other FPGA

architectures
● Not timing-driven

25

Icestorm Flow
● Complete Yosys, arachne-pnr & icestorm flow

released in May 2015
● Lattice quickly sold out of icesticks!
● Enabled a wide range of open source & open

hardware FPGA projects

26

iCE40 UltraPlus
● New series of iCE40 FPGAs released by Lattice in

2016-17
● 5k logic cells
● 8 16x16 DSP cores, 1Mbit single-port RAM – in

addition 120kbit usual dual-port block RAM
● Constant current RGB LED pins
● PWM, SPI and I2C hard IP
● Ultra low power – 100µW idle, CNN accelerator ~8mW

27

iCE40 UltraPlus

Source: Lattice Semiconductor

28

iCE40 UltraPlus
● Icestorm & arachne-pnr support added by January

2018
● Required instantiation of DSPs and single-port RAM

(cannot be inferred for Verilog arithmetic / arrays)
● Support for DSP inference from multiply/add operators

added February 2019
● Single-port RAM inference support still an outstanding

TODO

29

Open FPGA Hardware

@folknology
Alan Wood

30

IceStorm 2015 – Vendor Hardware

31

IceStorm 2016 – Open FPGA

32

IceStorm 2017 - 2nd Gen OSH

33

IceStorm 2018 - Present

34

Open FPGA Toolchains
From Present to Future

David Shah
@fpga_dave

Symbiotic EDA

Slides: fpga.dev/oshug.pdf

https://fpga.dev/oshug.pdf

35

nextpnr
● New open source multi-architecture place and

route tool
● Development started early May 2018
● Aimed primarily at real silicon (unlike academic

open PnR tools such as VPR)
● Timing driven throughout

36

nextpnr
● Support for Lattice iCE40 and ECP5 FPGAs
● Work in progress to support various Xilinx

FPGAs
● Future “generic” architecture will allow building

FPGA using Python API

37

nextpnr

38

nextpnr
● Architectures in nextpnr implement an API

rather than providing fixed data files
● Choose how you store the device database

based on device size and external constraints
● Custom packer and other functions can be

architecture-provided

39

nextpnr Arch API
● Blackbox ID types: BelId, WireId, PipId
● getBels(), getPips(), getWires(), getPipsUphill(wire):

return “some kind of range” of BelId, PipId, etc
● Range must implement begin(), end()
● Iterators must implement ++, *, !=
● Could be anything from a std::vector to custom walker of

a deduplicated database!

40

nextpnr Arch API
● Arch code stored in its own folder, different

binary for each arch built
● Enables heavy compile-time optimisation and

arch-specific types compared to virtual
functions

● Avoids n² build complexity of C++ templates

41

nextpnr
● iCE40 architecture uses a flat database,

containing details of everything in the chip with
no attempt to remove repetition

● ECP5 much larger, this would mean a database
in the GB

● So we use a deduplicated database approach

42

nextpnr
● During database creation, we build a full flat

database in memory using relative coordinates
● Then we split it into grid locations, and use a

hash to find identical grid locations
● Identical grid locations only need their content

to be stored once in the final database

43

nextpnr
● Text configuration used as an intermediate

format between nextpnr and bitstream
generation

● Avoids need for low level bitstream code in
nextpnr

44

ECP5 FPGA
● Up to 85k logic cells (LUT4+carry+FF)
● Up to 3.7Mb block RAM (in 18Kb blocks), 156

18x18 DSPs
● Available with 3Gbps or 5Gbps SERDES for

PCIe, USB 3.0, etc
● Single-quantity pricing starts from $5 (“12k” LE)

45

ECP5 Architecture
● Split up into tiles of different types. Logic tiles split into 4 slices
● Slice: 2 LUT + 2FF; carry + 2FF; 16x2 RAM + 2FF; also cascade

muxes
● Fixed interconnect wires
● Arcs connect wires together and are configurable or fixed (aka

pip)
● All arcs and wires are unidirectional – mux topology
● Dedicated global clock network connects to all tiles

46

ECP5 Architecture

Logic

DSP

RAM

SERDES

IO

Clock Taps

Clock
Muxes

47

ECP5 Architecture
Logic tiles contain both
logic and interconnect

CIB tiles contain interconnect
for non-logic functions

MIB tiles contain non-logic
functionality (EBR, DSP, IO,
etc)

More than one tile at a
location is possible!

48

Project Trellis
● Open source bitstream docs & tools for ECP5 FPGAs
● Development started March 2018
● Basic set of bitstream docs May 2018
● Proof-of-concept flow June 2018
● Complete bitstream docs Nov 2018
● Near-complete flow Feb 2019

49

Trellis Status
● Bit and routing documentation for almost all

functionality (missing: obscure DSP modes)
● Timing documentation for fabric, logic cells, IO and

BRAM
● Timing-driven Yosys & nextpnr flow supporting

majority of functionality including BRAM, PLL,
SERDES, DDR memory IO

50

Trellis Database

51

DatabaseNormalised netname
Nominal position is x+3

Frame 104, bit 9
inside tile

52

Database

53

Database

54

Text Configuration
● Need to make use of & test fuzz results
● Tools to convert bitstreams to/from a text config

format
● Check that output is logical for simple designs
● Check for unknown bits in larger designs

55

Text Configuration
.tile R53C71:PLC2
arc: A1 W1_H02E0701
arc: A3 H02E0701
arc: A4 H02E0501
arc: A5 V00B0000
arc: A7 W1_H02E0501
arc: B0 S1_V02N0301
arc: S3_V06S0303 W3_H06E0303
arc: W1_H02W0401 V02S0401
word: SLICEA.K0.INIT 1100110000000000
word: SLICEA.K1.INIT 1010101000000000
enum: SLICEA.CCU2.INJECT1_0 NO
enum: SLICEA.CCU2.INJECT1_1 NO
enum: SLICEA.D0MUX 1
enum: SLICEA.D1MUX 1
enum: SLICEA.MODE CCU2

56

Timing
● Need to know how large internal delays are to

determine if a design can work at a given frequency
● Like bitstream format, not enough vendor

documentation
● Delays for cells (LUTs, etc) extracted from SDF files
● Interconnect delays determined using least-squares

linear fit

57

Capabilities
● Linux-capable VexRiscv SoC with Ethernet and

DDR3 memory
● 64-bit RISC-V SoC
● High-speed IO interfaces such as PCIe, DDR3

memory, HDMI, cameras

58

Current Work
● Faster analytic placer
● More optimisations in synthesis - using better

interfaces to ABC, the logic optimisation &
mapping framework Yosys uses

● DSP, shift register and improved RAM inference
● Support for Xilinx devices in nextpnr

59

Analytic Placement
● Analytic placer to augment the current simulated

annealing placer
● SA used by arachne-pnr, originally in nextpnr and

most “first-generation” FPGA flows (ISE, older
Quartus)

● Analytic placement can be both faster and give
higher quality results

60

Analytic Placement
● Based around solving a system of equations to

determine optimum placement of cells
● But naïve approach would put every cell more-or-less

at one location in the center!
● One option: iterative solving and then spreading
● Add a weight in later iterations to keep cells close to

their spread (legal) position

61

DSP Inference

● Converting the * operator in Verilog and
surrounding functions to hard DSP primitives

● Clifford has developed “pmgen” framework for
netlist pattern matches

● Support for iCE40 DSPs including registers,
adders and accumulator muxes

62

Open FPGA Toolchains
ECP5 SoC demo

David Shah
@fpga_dave

Symbiotic EDA

Slides: fpga.dev/oshug.pdf

https://fpga.dev/oshug.pdf

63

IceStorm - Near Future

64

NextPnr – OpenFPGA ECP5

65

OpenFPGA – ECP5 Features
● Many more resources Up to 85K Luts
● Built in Blcok Ram up to 3.7Mbit
● DSP units up 156 18 x 18 Multiply
● Optional Serdes packages at 3/5Gbps
● IO gearing to support DDR RAM and DDR LVDS

or high speed Lvds for CSI or MIPI

66

OpenFPGA – ECP5 new apps
● SOCs and multicores with larger/faster memories, buses and IO
● Sophisticated Operating System support using above combined with larger

resources (Luts) e.g. Free BSD or Linux embedded apps
● Video and Frame buffers for faster graphics output (HDMI up to 1080p 30Fps),

faster edp using optional Serdes resources
● Many channel realtime 24 bit Audio processing and voice recognition
● Embedded Video capture, processing and Machine Vision applications
● Custom embedded application accelerators, RL, ANNs and NTMs.
● Robotics multiple FOC BLDC motor control, complex biped and quadraped

propulsion systems

67

SOC Requirements
R

A
M

B

yt
e

s

MicroPython

Zephyr OS

Inferno

Plan9

FreeBSD

Linux

LUTs

4M

8M

16M

32M

64M

2M

1M

40K10K5K 20K 80K2.5K

68

69

Machine Vision & Learning

70

71

IceStudio

72

Recognise This?

73

Recognise This?

74

Recognise This?

75

Demo Time!
● VexRiscv based SoC on the ECP5 Versa
● VexRiscv: 32-bit RISC-V processor in SpinalHDL (Scala

based)
● LiteX used for SoC integration (Python based)
● Uses LiteX cores – litedram for DDR3 and liteeth for

Gigabit Ethernet
● Built with nextpnr, Yosys & Trellis

76

Demo Time!

● Experimental Linux port to VexRiscv
● Non-standard MMU, timer & interrupts (work to

fix these in progress)
● Missing atomic instructions needed by

userspace emulated in illegal instruction trap
handler

77

Demo Time!
● 128MB of RAM is enough to run the open FPGA

toolchain
● C/C++ tools with few dependencies, easy to cross

compile for RISC-V
● Buildroot rootfs with FPGA tools on an NFS share for

ease of development
● LiteX provides TFTP bootloader, handy for kernel dev

78

Demo Time!

● Mystorm Ice board (iCE40LP384)
● SPI programming port connected to some

GPIO on the Versa
● Easy to add GPIO with LiteX
● Simple bitbang programming tool

79

Demo Time!
VexRiscv CPU

Data Instructions

Wishbone Interconnect

litedram

128MB
DDR3

liteeth

RGMII Phy

1GBase-T
Ethernet

LiteX UART

USB-UART

PC USB
(console)

GPIO

iCE40 FPGA
SPI

LiteX Timer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

