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FPGA?
● Field Programmable Gate Array
● Chip containing user-programmable digital 

logic
● Can be (re)programmed “in the field” - older 

devices programmed once by literally burning 
fuses
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FPGA?
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FPGA Logic
I0

I1

I2

I3

From 
programmable 

routing

Q
To 
programmable 
routing

LUT4I0

Look Up Table (LUT) – basic logic element of an FPGA

a K-input LUT has 2K bits of memory storing its function
e.g. 4-input AND: 1000 0000 0000 0000
         4-input OR: 1111 1111 1111 1110
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FPGA Logic

CLK

D

From 
programmable 

routing

Q
To 
programmable 
routing

DFF

D-type flip flop (DFF) – basic storage element of an FPGA

D is stored at the rising or falling edge of CLK

Combine DFFs and LUTs to build sequential logic such as 
state machines, counters, CPUs, ...
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FPGA Routing

buffer

DFF output

horizontal wire 1

horizontal wire 2

vertical wire 1

vertical wire 2

previous LUT output

LUT input 0

X  programmable config bit X

transistor – passes horizontally
when gate (bottom) is high
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FPGA Structure

(vertical interconnect not shown for clarity)

Tile

Wires
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FPGA Structure

LUT & DFF
(x8)

Routing
switchbox
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FPGA Structure
● Modern FPGAs aren’t just LUTs and DFFs!
● Block RAM: dual port SRAM, usually 4-36 kbit
● DSP: multiplier and adders
● High speed IO blocks for DDR memory, HDMI, PCI 

Express, etc
● Even CPUs! (Zynq ARM cores, Virtex-II Pro PPC)
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FPGA Configuration

CLK

D Q

CLK

D Q

CLK

D Q

CLK

D Q

Config Clock

Config Data

LUT inputs

LUT output

2-input FPGA LUT, showing configuration shift register

mux
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FPGA Configuration
● Logic and routing in a modern FPGA uses shift 

register type structures for configurability
● The programming file for an FPGA, called a 

bitstream, loads all of these shift registers
● Typical bitstreams comprised of commands, for both 

loading configuration and other tasks such as 
initialising block RAM
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FPGA Configuration
● No (public) documents telling you what the bits 

inside a bitstream actually do!
● Unlike most other kinds of programmable chip – 

microcontrollers usually have register guides, etc
● Expectation is to use vendor-provided proprietary 

design software
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FPGA Toolchains
● FPGA designs are written in a hardwareD 

description language (HDL), usually Verilog or 
VHDL

● Also higher level frameworks such as 
Migen/LiteX (Python based), SpinalHDL (Scala 
based) – still generate Verilog though
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Synthesis
module top(

input clk,
input a, s,
output reg q

);

always @(posedge clk)
if (s)

q <= 1;
else

q <= q ^ a;

endmodule

CLK

D Q

clk

s

1

a
q

Verilog Source

Elaborated Circuit

CLK

D Q

clk

s
a q

LUT2
1110

LUT2
0110

Mapped to 2-input LUTs
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Placement
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Routing
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Open FPGA Flows
● Need to document bitstreams to build open source 

tools
● Project Icestorm: bitstream documentation for iCE40 

FPGAs by Clifford Wolf & Matthias Lasser
● Combined with Yosys & arachne-pnr to build the first 

useful open FPGA flow
● arachne-pnr later replaced by nextpnr
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iCE40 FPGAs
● 384 – 8k logic cells
● 1 logic cell: 4-input LUT, flipflop, carry logic for adders
● Up to 128kbit block RAM in 4kbit blocks
● 8 global networks to distribute clocks, resets and 

clock enables to all tiles
● Ultra and UltraPlus parts have some extra features
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iCE40 FPGAs
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Project Icestorm
● 2019-02-23: Initial support for iCE40 Ultra devices.
● 2018-01-30: Released support for iCE40 UltraPlus devices.
● 2017-03-13: Released support for LP384 chips (in all package variants).
● 2016-02-07: Support for all package variants of LP1K, LP4K, LP8K and HX1K, HX4K, and HX8K.
● 2016-01-17: First release of IceTime timing analysis. Video: https://youtu.be/IG5CpFJRnOk
● 2015-12-27: Presentation of the IceStorm flow at 32C3 (Video on Youtube).
● 2015-07-19: Released support for 8k chips. Moved IceStorm source code to GitHub.
● 2015-05-27: We have a working fully Open Source flow with Yosys and Arachne-pnr! Video: 

http://youtu.be/yUiNlmvVOq8
● 2015-04-13: Complete rewrite of IceUnpack, added IcePack, some major documentation updates
● 2015-03-22: First public release and short YouTube video demonstrating our work: 

http://youtu.be/u1ZHcSNDQMM                                                                 

Source: clifford.at/icestorm 
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Project Icestorm
● Manual analysis of bitstreams to determine commands
● Automatic creation of large numbers of bitstreams to 

discover routing & functionality config bits
● Also built tools for packing/unpacking bitstreams, 

generating databases for place-and-route
● First targetted LP/HX1K; then LP/HX 4K/8K; then 

Ultra/UltraPlus
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Yosys
● Open source Verilog synthesis framework
● Development started by Clifford Wolf in 2012
● Support for multiple FPGA families (iCE40, Xilinx 7-

series, ECP5, Microsemi) & ASIC synthesis
● Support for formal verification and many other tasks
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Yosys
● Typical flow goes from Verilog to a synthesised circuit 

containing LUTs, flipflops, etc in BLIF, EDIF or JSON 
format

● Support for inferring block RAM from Verilog arrays
● Experimental support for iCE40 DSP inference from 

multiplies & adds in Verilog
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arachne-pnr
● First open source place-and-route tool for iCE40
● Developed by cseed in 2015 using Project Icestorm
● Fast, simple and lightweight – fulfilled its purpose well
● Tied to iCE40 & hard to port to other FPGA 

architectures
● Not timing-driven
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Icestorm Flow
● Complete Yosys, arachne-pnr & icestorm flow 

released in May 2015
● Lattice quickly sold out of icesticks!
● Enabled a wide range of open source & open 

hardware FPGA projects
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iCE40 UltraPlus
● New series of iCE40 FPGAs released by Lattice in 

2016-17
● 5k logic cells
● 8 16x16 DSP cores, 1Mbit single-port RAM – in 

addition 120kbit usual dual-port block RAM
● Constant current RGB LED pins
● PWM, SPI and I2C hard IP
● Ultra low power – 100µW idle, CNN accelerator ~8mW
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iCE40 UltraPlus

Source: Lattice Semiconductor
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iCE40 UltraPlus
● Icestorm & arachne-pnr support added by January 

2018
● Required instantiation of DSPs and single-port RAM 

(cannot be inferred for Verilog arithmetic / arrays)
● Support for DSP inference from multiply/add operators 

added February 2019
● Single-port RAM inference support still an outstanding 

TODO
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Open FPGA Hardware

@folknology
Alan Wood
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IceStorm 2015 – Vendor Hardware
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IceStorm 2016 – Open FPGA
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IceStorm 2017 - 2nd Gen OSH
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IceStorm 2018 - Present
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Open FPGA Toolchains
From Present to Future
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@fpga_dave
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nextpnr
● New open source multi-architecture place and 

route tool
● Development started early May 2018
● Aimed primarily at real silicon (unlike academic 

open PnR tools such as VPR)
● Timing driven throughout 
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nextpnr
● Support for Lattice iCE40 and ECP5 FPGAs
● Work in progress to support various Xilinx 

FPGAs
● Future “generic” architecture will allow building 

FPGA using Python API
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nextpnr
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nextpnr
● Architectures in nextpnr implement an API 

rather than providing fixed data files
● Choose how you store the device database 

based on device size and external constraints
● Custom packer and other functions can be 

architecture-provided
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nextpnr Arch API
● Blackbox ID types: BelId, WireId, PipId
● getBels(), getPips(), getWires(), getPipsUphill(wire): 

return “some kind of range” of BelId, PipId, etc
● Range must implement begin(), end()
● Iterators must implement ++, *, !=
● Could be anything from a std::vector to custom walker of 

a deduplicated database!
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nextpnr Arch API
● Arch code stored in its own folder, different 

binary for each arch built
● Enables heavy compile-time optimisation and 

arch-specific types compared to virtual 
functions

● Avoids n² build complexity of C++ templates
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nextpnr
● iCE40 architecture uses a flat database, 

containing details of everything in the chip with 
no attempt to remove repetition

● ECP5 much larger, this would mean a database 
in the GB

● So we use a deduplicated database approach
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nextpnr
● During database creation, we build a full flat 

database in memory using relative coordinates
● Then we split it into grid locations, and use a 

hash to find identical grid locations
● Identical grid locations only need their content 

to be stored once in the final database
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nextpnr
● Text configuration used as an intermediate 

format between nextpnr and bitstream 
generation

● Avoids need for low level bitstream code in 
nextpnr
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ECP5 FPGA
● Up to 85k logic cells (LUT4+carry+FF)
● Up to 3.7Mb block RAM (in 18Kb blocks), 156 

18x18 DSPs
● Available with 3Gbps or 5Gbps SERDES for 

PCIe, USB 3.0, etc
● Single-quantity pricing starts from $5 (“12k” LE)
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ECP5 Architecture
● Split up into tiles of different types. Logic tiles split into 4 slices
● Slice: 2 LUT + 2FF; carry + 2FF; 16x2 RAM + 2FF; also cascade 

muxes
● Fixed interconnect wires
● Arcs connect wires together and are configurable or fixed (aka 

pip)
● All arcs and wires are unidirectional – mux topology
● Dedicated global clock network connects to all tiles
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ECP5 Architecture

Logic

DSP

RAM

SERDES

IO

Clock Taps

Clock
Muxes
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ECP5 Architecture
Logic tiles contain both
logic and interconnect

CIB tiles contain interconnect 
for non-logic functions

MIB tiles contain non-logic 
functionality (EBR, DSP, IO, 
etc)

More than one tile at a 
location is possible!
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Project Trellis
● Open source bitstream docs & tools for ECP5 FPGAs
● Development started March 2018
● Basic set of bitstream docs May 2018
● Proof-of-concept flow June 2018
● Complete bitstream docs Nov 2018
● Near-complete flow Feb 2019
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Trellis Status
● Bit and routing documentation for almost all 

functionality (missing: obscure DSP modes)
● Timing documentation for fabric, logic cells, IO and 

BRAM
● Timing-driven Yosys & nextpnr flow supporting 

majority of functionality including BRAM, PLL, 
SERDES, DDR memory IO
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Trellis Database



  

51

DatabaseNormalised netname
Nominal position is x+3

Frame 104, bit 9
inside tile
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Database
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Database
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Text Configuration
● Need to make use of & test fuzz results
● Tools to convert bitstreams to/from a text config 

format
● Check that output is logical for simple designs
● Check for unknown bits in larger designs
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Text Configuration
.tile R53C71:PLC2
arc: A1 W1_H02E0701
arc: A3 H02E0701
arc: A4 H02E0501
arc: A5 V00B0000
arc: A7 W1_H02E0501
arc: B0 S1_V02N0301
arc: S3_V06S0303 W3_H06E0303
arc: W1_H02W0401 V02S0401
word: SLICEA.K0.INIT 1100110000000000
word: SLICEA.K1.INIT 1010101000000000
enum: SLICEA.CCU2.INJECT1_0 NO
enum: SLICEA.CCU2.INJECT1_1 NO
enum: SLICEA.D0MUX 1
enum: SLICEA.D1MUX 1
enum: SLICEA.MODE CCU2
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Timing
● Need to know how large internal delays are to 

determine if a design can work at a given frequency
● Like bitstream format, not enough vendor 

documentation
● Delays for cells (LUTs, etc) extracted from SDF files
● Interconnect delays determined using least-squares 

linear fit
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Capabilities
● Linux-capable VexRiscv SoC with Ethernet and 

DDR3 memory
● 64-bit RISC-V SoC
● High-speed IO interfaces such as PCIe, DDR3 

memory, HDMI, cameras
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Current Work
● Faster analytic placer
● More optimisations in synthesis - using better 

interfaces to ABC, the logic optimisation & 
mapping framework Yosys uses

● DSP, shift register and improved RAM inference
● Support for Xilinx devices in nextpnr
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Analytic Placement
● Analytic placer to augment the current simulated 

annealing placer
● SA used by arachne-pnr, originally in nextpnr and 

most “first-generation” FPGA flows (ISE, older 
Quartus)

● Analytic placement can be both faster and give 
higher quality results
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Analytic Placement
● Based around solving a system of equations to 

determine optimum placement of cells
● But naïve approach would put every cell more-or-less 

at one location in the center!
● One option: iterative solving and then spreading
● Add a weight in later iterations to keep cells close to 

their spread (legal) position
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DSP Inference

● Converting the * operator in Verilog and 
surrounding functions to hard DSP primitives

● Clifford has developed “pmgen” framework for 
netlist pattern matches

● Support for iCE40 DSPs including registers, 
adders and accumulator muxes
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IceStorm -  Near Future
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NextPnr – OpenFPGA ECP5
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OpenFPGA – ECP5 Features
● Many more resources Up to 85K Luts
● Built in Blcok Ram up to 3.7Mbit
● DSP units up 156 18 x 18 Multiply
● Optional Serdes packages at 3/5Gbps
● IO gearing to support DDR RAM and DDR LVDS 

or high speed Lvds for CSI or MIPI
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OpenFPGA – ECP5 new apps
● SOCs and multicores with larger/faster memories, buses and IO
● Sophisticated Operating System support using above combined with larger 

resources (Luts) e.g. Free BSD or Linux embedded apps
● Video and Frame buffers for faster graphics output (HDMI up to 1080p 30Fps), 

faster edp using optional Serdes resources
● Many channel realtime 24 bit Audio processing and voice recognition
● Embedded Video capture, processing and Machine Vision applications
● Custom embedded application accelerators, RL, ANNs and NTMs.
● Robotics multiple FOC BLDC motor control, complex biped and quadraped 

propulsion systems
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SOC Requirements
R

A
M

 
B

yt
e

s

MicroPython

Zephyr OS

Inferno

Plan9

FreeBSD

Linux

LUTs

4M

8M

16M

32M

64M

2M

1M

40K10K5K 20K 80K2.5K
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Machine Vision &  Learning
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IceStudio
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Recognise This?
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Recognise This?
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Recognise This?
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Demo Time!
● VexRiscv based SoC on the ECP5 Versa
● VexRiscv: 32-bit RISC-V processor in SpinalHDL (Scala 

based)
● LiteX used for SoC integration (Python based)
● Uses LiteX cores – litedram for DDR3 and liteeth for 

Gigabit Ethernet
● Built with nextpnr, Yosys & Trellis
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Demo Time!

● Experimental Linux port to VexRiscv
● Non-standard MMU, timer & interrupts (work to 

fix these in progress)
● Missing atomic instructions needed by 

userspace emulated in illegal instruction trap 
handler
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Demo Time!
● 128MB of RAM is enough to run the open FPGA 

toolchain
● C/C++ tools with few dependencies, easy to cross 

compile for RISC-V
● Buildroot rootfs with FPGA tools on an NFS share for 

ease of development
● LiteX provides TFTP bootloader, handy for kernel dev



  

78

Demo Time!

● Mystorm Ice board (iCE40LP384)
● SPI programming port connected to some 

GPIO on the Versa
● Easy to add GPIO with LiteX
● Simple bitbang programming tool
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Demo Time!
VexRiscv CPU

Data Instructions

Wishbone Interconnect

litedram

128MB
DDR3

liteeth

RGMII Phy

1GBase-T
Ethernet

LiteX UART

USB-UART

PC USB
(console)

GPIO

iCE40 FPGA
SPI

LiteX Timer
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