

DUHDe 2019 – Project Trellis
Open Tools for the ECP5 FPGA (and beyond)

David Shah
@fpga_dave

Symbiotic EDA

Slides: fpga.dev/duhde19.pdf

https://fpga.dev/duhde19.pdf

FPGA?
● Field Programmable Gate Array
● Chip containing user-programmable digital

logic
● Can be (re)programmed “in the field” - older

devices programmed once by literally burning
fuses

FPGA?

FPGA Logic
I0

I1

I2

I3

From
programmable

routing

Q
To
programmable
routing

LUT4I0

Look Up Table (LUT) – basic logic element of an FPGA

a K-input LUT has 2K bits of memory storing its function
e.g. 4-input AND: 1000 0000 0000 0000
 4-input OR: 1111 1111 1111 1110

FPGA Logic

CLK

D

From
programmable

routing

Q
To
programmable
routing

DFF

D-type flip flop (DFF) – basic storage element of an FPGA

D is stored at the rising or falling edge of CLK

Combine DFFs and LUTs to build sequential logic such as
state machines, counters, CPUs, ...

FPGA Routing

buffer

DFF output

horizontal wire 1

horizontal wire 2

vertical wire 1

vertical wire 2

previous LUT output

LUT input 0

X programmable config bit X

transistor – passes horizontally
when gate (bottom) is high

FPGA Structure

(vertical interconnect not shown for clarity)

Tile

Wires

FPGA Structure

LUT & DFF
(x8)

Routing
switchbox

FPGA Structure
● Modern FPGAs aren’t just LUTs and DFFs!
● Block RAM: dual port SRAM, usually 4-36 kbit
● DSP: multiplier and adders
● High speed IO blocks for DDR memory, HDMI, PCI

Express, etc
● Even CPUs! (Zynq ARM cores, Virtex-II Pro PPC)

FPGA Configuration

CLK

D Q

CLK

D Q

CLK

D Q

CLK

D Q

Config Clock

Config Data

LUT inputs

LUT output

2-input FPGA LUT, showing configuration shift register

mux

FPGA Configuration
● Logic and routing in a modern FPGA uses shift

register type structures for configurability
● The programming file for an FPGA, called a

bitstream, loads all of these shift registers
● Typical bitstreams comprised of commands, for both

loading configuration and other tasks such as
initialising block RAM

FPGA Configuration
● No (public) documents telling you what the bits

inside a bitstream actually do!
● Unlike most other kinds of programmable chip –

microcontrollers usually have register guides, etc
● Expectation is to use vendor-provided proprietary

design software

Open FPGA Flows
● Need to document bitstreams to build open source

tools
● Project Icestorm: bitstream documentation for iCE40

FPGAs by Clifford Wolf & Matthias Lasser
● Combined with Yosys & arachne-pnr to build the first

useful open FPGA flow
● arachne-pnr later replaced by nextpnr

Project Trellis
● Open source bitstream docs & tools for ECP5 FPGAs
● Development started March 2018
● Basic set of bitstream docs May 2018
● Proof-of-concept flow June 2018
● Complete bitstream docs Nov 2018
● Near-complete flow Feb 2019

Trellis Status
● Bit and routing documentation for almost all

functionality (missing: obscure DSP modes)
● Timing documentation for fabric, logic cells, IO and

BRAM
● Timing-driven Yosys & nextpnr flow supporting

majority of functionality including BRAM, PLL,
SERDES, DDR memory IO

ECP5 Architecture
● Split up into tiles of different types. Logic tiles split into 4 slices
● Slice: 2 LUT + 2FF; carry + 2FF; 16x2 RAM + 2FF; also cascade

muxes
● Fixed interconnect wires
● Arcs connect wires together and are configurable or fixed (aka

pip)
● All arcs and wires are unidirectional – mux topology
● Dedicated global clock network connects to all tiles

ECP5 Architecture

Logic

DSP

RAM

SERDES

IO

Clock Taps

Clock
Muxes

ECP5 Architecture
Logic tiles contain both
logic and interconnect

CIB tiles contain interconnect
for non-logic functions

MIB tiles contain non-logic
functionality (EBR, DSP, IO,
etc)

More than one tile at a
location is possible!

Low Level Bits
● First step – pack and unpack bitstreams
● ECP5 bitstreams contain various commands
● Chip configuration structured as frames of bits
● One command configures all frames, with a CRC

after each frame’s data
● Tiles are a region defined by start/end frame/bit

Low Level Bits
Comment header – ignored by FPGA (ASCII strings) Preamble

Dummy Reset CRC Check IDCODESet CTRL0 Init Address Load number frames Frame N-1 Data

Low Level Bits

Frame data CRC Dummy

Frames and bits

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

C
R
C

Frame

Bit

Tile

Low Level Bits
● Lattice have some documentation on bitstream

commands
● Trial and error needed to work out CRCs, bit

ordering, etc
● Know you are good when you can round-trip to

an identical bitstream

Fuzzing
● Now need to work out what the bits actually do
● Created a Python library (with Boost) to access

bitstreams
● Wrote a Python framework for fuzzers

Fuzzing
● Use Lattice ncl files to create post place-and-

route designs
● Faster and very targeted
● Use a Tcl API to list wires and arcs
● Spend time looking for useful interfaces!

Fuzzing
● Two things to fuzz: routing and non-routing config
● Routing

– Use Tcl to list wires in a tile and arcs on those wires
– Create designs for each arc with only that arc, and look at bit

changes
– Normalise net names and store in database
– 1-2 hours for a full logic tile
– Very automated, extends to other tiles easily

Fuzzing
● Two things to fuzz: routing and non-routing config
● Non-routing config

– “Word” style configuration (LUT init): create a design with each
bit set and look for changes

– “Enum” style configuration (IO type): create a design with each
possible option

– In all cases config setting and size/possible options do need to
be specified manually

Typical Fuzzer – FF modes
def get_substs(regset="RESET", sd="0", lsrmode="LSR", gsr="DISABLED"):

 return dict(slice=slicen, r=str(r), regset=regset, sd=sd, lsrmode=lsrmode, gsr=gsr)

for r in range(2):

 nonrouting.fuzz_enum_setting(cfg, "SLICE{}.REG{}.REGSET".format(slicen, r), ["RESET", "SET"],

 lambda x: get_substs(regset=x), empty_bitfile)

 nonrouting.fuzz_enum_setting(cfg, "SLICE{}.REG{}.SD".format(slicen, r), ["0", "1"],

 lambda x: get_substs(sd=x), empty_bitfile)

 nonrouting.fuzz_enum_setting(cfg, "SLICE{}.REG{}.LSRMODE".format(slicen, r), ["LSR", "PRLD"],

 lambda x: get_substs(lsrmode=x), empty_bitfile)

 nonrouting.fuzz_enum_setting(cfg, "SLICE{}.GSR".format(slicen), ["DISABLED", "ENABLED"],

 lambda x: get_substs(gsr=x), empty_bitfile)

Fuzzing
● Database can be rendered as HTML for manual

checks

https://symbiflow.github.io/prjtrellis-db/

Trellis Database

DatabaseNormalised netname
Nominal position is x+3

Frame 104, bit 9
inside tile

Database

Database

Text Configuration
● Need to make use of & test fuzz results
● Tools to convert bitstreams to/from a text config

format
● Check that output is logical for simple designs
● Check for unknown bits in larger designs

Text Configuration
.tile R53C71:PLC2
arc: A1 W1_H02E0701
arc: A3 H02E0701
arc: A4 H02E0501
arc: A5 V00B0000
arc: A7 W1_H02E0501
arc: B0 S1_V02N0301
arc: S3_V06S0303 W3_H06E0303
arc: W1_H02W0401 V02S0401
word: SLICEA.K0.INIT 1100110000000000
word: SLICEA.K1.INIT 1010101000000000
enum: SLICEA.CCU2.INJECT1_0 NO
enum: SLICEA.CCU2.INJECT1_1 NO
enum: SLICEA.D0MUX 1
enum: SLICEA.D1MUX 1
enum: SLICEA.MODE CCU2

Timing
● Need to know how large internal delays are to

determine if a design can work at a given frequency
● Like bitstream format, not enough vendor

documentation
● Delays for cells (LUTs, etc) extracted from SDF files
● Interconnect delays determined using least-squares

linear fit

Timing
● Group interconnect switches into classes
● If signal is routed

Q5 -> span2 -> span2 -> span2 -> span1 -> A5

and has delay 1200ps
● q_sp2 + 2 * sp2_sp2 + sp2_sp1 + sp1_a = 1200

Open Source Flow
● Yosys: Verilog synthesis & techmapping
● nextpnr: place and route
● Trellis: bitstream generation

Yosys
● Open Verilog synthesis framework
● Support for multiple FPGA families & ASIC

synthesis
● Also support for formal verification, design

manipulation, ….

Yosys
● Verilog technology map rules are very flexible
● Create map rules for coarse- or fine-grained cells
● Coarse grain: adders, shift registers
● Fine grain: LUT cascade muxes, flipflops, latches
● Dedicated BRAM inference pass

Yosys
● pmgen: Experimental code generator

framework for netlist pattern matching
● Intended for DSP inference
● Proof-of-concept iCE40 DSP inference
● ECP5 DSP inference still TODO

nextpnr
● New multi-architecture place-and-route
● Support for iCE40 & ECP5 FPGAs

(experimental: Xilinx)
● Architectures described using code, not just flat

data files
● Timing driven

nextpnr
● Analytic & SA placer options
● A*-with-ripup router
● Packer & bitstream gen provided by

architecture
● Extensible using Python API

nextpnr

Capabilities
● VexRiscv system-on-chip with DDR3 & 1GbE
● High-speed interfaces including HDMI
● Build & program blinky in 3 seconds
● Build & program picorv32 SoC in <20 seconds
● WIP: open PCIe PHY, ...

Capabilities

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

