

version:	Э.

Total Page: 26

CUSTOMER APPROVAL SHEET

Company	
Name	
MODEL	H381DLN01.0
CUSTOMER	Title :
APPROVED	Name :
APPROVAL FOR SPECIFICA	ATIONS ONLY (Spec. Ver)
APPROVAL FOR SPECIFICA	ATIONS AND ES SAMPLE (Spec. Ver)
APPROVAL FOR SPECIFICA	ATIONS AND CS SAMPLE (Spec. Ver)
CUSTOMER REMARK:	

1 Li-Hsin Rd. 2. Science-Based Industrial Park Hsinchu 300, Taiwan, R.O.C.

Doc. version :	5.0
Total pages:	26
Date :	2016/03/11

Product Specification 3.81" COLOR AMOLED MODULE

MODEL NAME: H381DLN01.0

Trial-run sample P/N: 95.03H70.000

MP product P/N: (TBD)

- >Preliminary Specification
- < >Final Specification

Note: The content of this specification is subject to change.

© 2015 AU Optronics All Rights Reserved, Do Not Copy.

Record of Revision

Version	Revise Date	Page	Content			
1.0	2015-11-09	1~26	First Draft			
		9	Add Power IC pin note.			
2.0	2015-11-09	17	Initial Setting Modify, change OVSS setting, RAM			
		17	bypass.			
3.0	2016-01-04	9	Recommend Power IC description.			
4.0	2016-01-18	4	Physical spec. Outline Dimension (w IQE)			
4.0	2010-01-16	26	Module outline (w IQE)			
		5~6	Pin Assignment			
		9	Recommend DC/DC Power IC Application Circuit			
5.0	2016 02 11	11	Scan Direction			
5.0	2016-03-11	16	Power on/off sequence			
		17	Initial setting			
		26	Module Outline			
	1					
)					
		<u> </u>				

Contents

м.	(30)	ıcıai əpecilicativii	- 4
	1.	Physical Specifications	
	2.	Pin Assignment	
	_,	-	
	3.	Absolute Maximum Ratings	6
В.	DC	Characteristics	7
	1.	Typical Operating Conditions	7
	2.	Display Current Consumption	8
	3.	Recommend DC/DC Power IC Application Circuit	9
C.	AC	Characteristics	10
	1.	Display Video Timing	10
	2.	Scan Direction	11
	3.	MIPI Interface Characteristics	
	4.	Display RESET Timing Characteristics	14
	5.	Recommended Operating Sequence	15
D.		ical Specification	18
E.	Reli	ability Test Items	22
F.	Pre	cautions	2 4
G.	Pac	king Information	25
н	Out	line Dimension	26

A. General Specification

1. Physical Specifications

NO	Item	unit	Specification	Remark
1	Screen Size	inch	3.81"	Diagonal
2	Display Resolution		1080(H) X 1200(V)	
3	Outline Dimension	mm	67.60 (H) x 78.95 (V) x 1.14(T)	
4	Active Area	mm	64.80 (H) x 72.0 (V)	
5	Pixel Pitch	um	60	
6	Color Configuration		R, G, B	
7	Color Depth		16.7M	8-bit x RGB
8	NTSC Ratio	%	100	CIE 1931
9	Display Mode		AMOLED	
10	Interface		MIPI DSI - Video Mode	
11	Driver IC		Raydium	RM69071

Pin Assignment 2.

AMOLED Main FPC Pin assignment

#	Pin_name	I/O/P	Description
1	OVSS	Р	OLED Power (Power IC need to follow AUO's suggestion)
2	OVSS	Р	OLED Power (Power IC need to follow AUO's suggestion)
3	OVSS	Р	OLED Power (Power IC need to follow AUO's suggestion)
4	OVDD	Р	OLED Power (Power IC need to follow AUO's suggestion)
5	OVDD	Р	OLED Power (Power IC need to follow AUO's suggestion)
6	OVDD	Р	OLED Power (Power IC need to follow AUO's suggestion)
7	GND	G	Ground
8	D2N	I	MIPI DSI data
9	D2P	I	MIPI DSI data
10	GND	G	Ground
11	D0N	I/O	MIPI DSI data
12	D0P	I/O	MIPI DSI data
13	GND	G	Ground
14	CLKN	I	MIPI DSI clock
15	CLKP	I	MIPI DSI clock
16	GND	G	Ground
17	D1N	I	MIPI DSI data
18	D1P	I	MIPI DSI data
19	GND	G	Ground
20	D3N	I	MIPI DSI data
21	D3P	I	MIPI DSI data
22	GND	G	Ground
23	IOVCC	Р	Display Driver Digital Power
24	IOVCC	Р	Display Driver Digital Power
25	VCI	P	Display Driver Analog Power
26	VCI	Р	Display Driver Analog Power
07	DECY		This signal will reset the device and must be applied to properly
27	RESX	l	initialize the chip. Signal is active low.
20	SWIRE	0	DC/DC power IC control signal
28	SWINE	0	(Power IC need to follow AUO's suggestion)
29	AVDD_EN	0	DC/DC power IC control signal
29	WADD_EIN	0	(Power IC need to follow AUO's suggestion)
30	MTP	Р	Leave this pin OPEN
31	GND	G	Ground
32	AVDD	Р	Display Driver IC Source Analog Power
02	AVDD	'	(Power IC need to follow AUO's suggestion)
33	AVDD	Р	Display Driver IC Source Analog Power
33	AVDD	'	(Power IC need to follow AUO's suggestion)

34	OVDD	Р	OLED Power (Power IC need to follow AUO's suggestion)		
35	OVDD	Р	OLED Power (Power IC need to follow AUO's suggestion)		
36	OVDD	Р	OLED Power (Power IC need to follow AUO's suggestion)		
37	OVSS	Р	DLED Power (Power IC need to follow AUO's suggestion)		
38	OVSS	Р	OLED Power (Power IC need to follow AUO's suggestion)		
39	OVSS	Р	OLED Power (Power IC need to follow AUO's suggestion)		

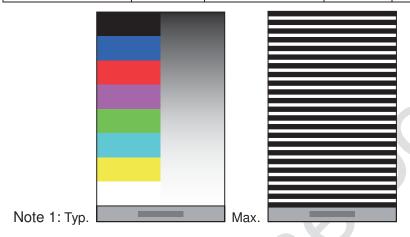
Recommended connector: Hirose FH35C-39S-0.3SHW (50)

3. Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remark
OLED Power supply	OVDD	-	4.6	V	
OLED Power supply	OVSS	-	-2.9	V	
Driver IC Source power supply	AVDD	-	5.8	V	
Digital Power supply	IOVCC	-0.3	+1.95	V	
Analog Power supply	VCI	-0.3	+3.2	V	

Note: If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operates with the absolute maximum ratings for a long time, the reliability may drop.

B. DC Characteristics

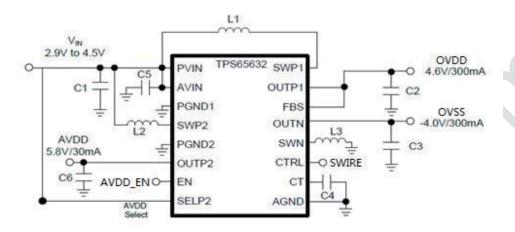

1. Typical Operating Conditions

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
OLED Power supply		OVDD	-	4.6	-	V	
OLED Power supply		ovss	-	-2.9	-	V	
Driver IC Source power s	upply	AVDD	-	5.8	-	V	
Digital Power supply		IOVCC	1.65	1.80	1.95	V	
Analog Power supply		VCI	2.8	3.0	3.2	V	
Input Cianal Valtage	H Level	V _{IH}	0.8* IOVCC	1	IOVCC	V	RESX
Input Signal Voltage	L Level	V _{IL}	0	-	0.2* IOVCC	V	nesa

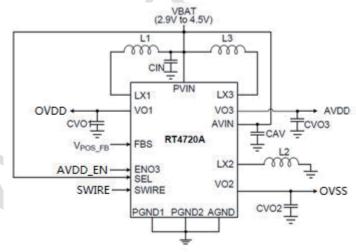
Note 1: The operation is guaranteed under the recommended operating conditions only. The operation is not guaranteed if a quick voltage change occurs during the operation. To prevent the noise, a bypass capacitor must be inserted into the line closed to the power pin.

Display Current Consumption

Mode	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	I _{AVDD}		-	15	30	mA	
	IVCI		-	3	3	mA	Note 1
Normal	lovcc	AVDD = 5.8V	-	38	40	mA	
	lovdd	VCI = 3V	-	-	16	mA	Note 2
	lovss	IOVCC = 1.8V	-	-	16	mA	Note 2
	lavdd	OVDD = 4.6V	-	-	1	uA	
Doon Standby	IVCI	OVSS = -2.9V	-	-	3	mA	
Deep Standby (DSTB=1)	lovcc	25℃	-	-	30	uA	Display Off
(DSTB=1)	lovdd		-	-	0	uA	
	lovss		-	-	0	uA	


Note 2: 100 nits White.

3. Recommend DC/DC Power IC Application Circuit

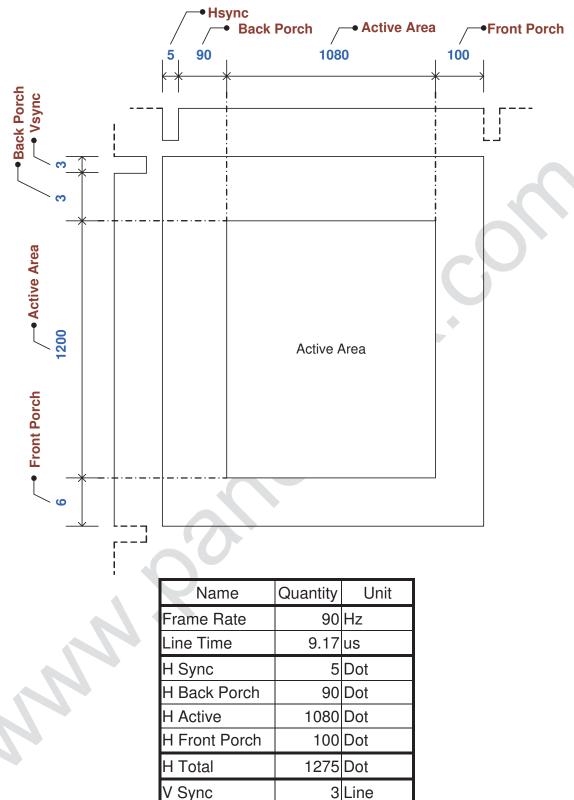

Power IC

Vendor	Model
TI	TPS65632RTER
Richtek	RT4720A

Bill of Materials

	Value	Part Number	Manufacturer
C1	3 x 10μF	GRM21BR71A106KE51	Murata
C2, C6	10μF	GRM21BR71A106KE51	Murata
C3	2 x 10μF	GRM21BR71A106KE51	Murata
C4, C5	100nF	GRM21BR71E104KA01	Murata
L1, L3	4.7μΗ	XFL4020-4R7ML	CoilCraft
L2	10μΗ	MMPP252012-100N	Coil Master

Bill of Materials


Component	Value	Part Number	Manufacture
CIN	10μFx3	GRM21BR71A106KE51	Murata
CVO1,CVO2,CVO3	10μF	GRM21BR71A106KE51	Murata
L1,L2	4.7μΗ	DFE252012C-4R7N	токо
L3	10μΗ	DFE252012C-100M	токо

AUO don't suggest use other power IC instead of TPS65632RTER/ RT4720A, since they don't be qualified by AUO.

C. AC Characteristics

1. **Display Video Timing**

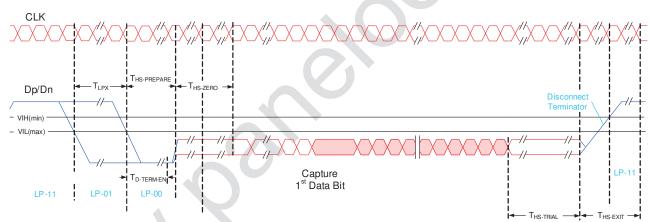
3 Line

6 Line

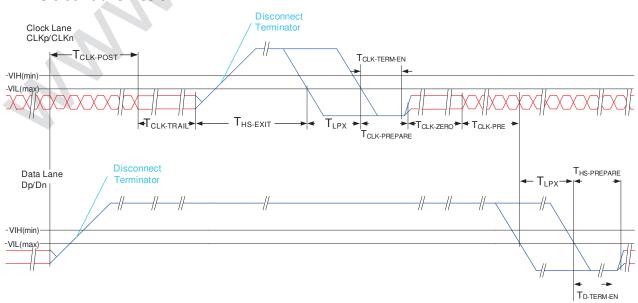
1200 Line

1212 Line

V Back Porch

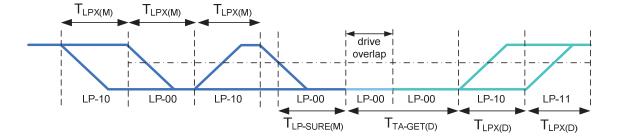

V Front Porch

V Active


Total

MIPI Interface Characteristics 3.

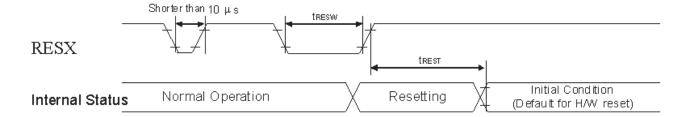
HS Data Transmission Burst



HS clock transmission

Turnaround Procedure

Timing Parameters

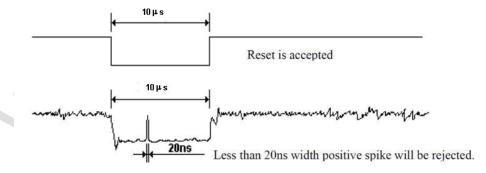

Timing Parameters					
Symbol	Description	Min	Тур	Max	Unit
T _{CLK-POST}	Time that the transmitter continues to send	60ns + 52*UI			ns
	HS clock after the last associated Data Lane				
	has transitioned to LP Mode. Interval is		6		
	defined as the period from the end of T_{HS-}	4			
	TRAIL to the beginning of T _{CLK-TRAIL} .		•		
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0	60			ns
	state after the last payload clock bit of a HS				
	transmission burst.				
$T_{HS-EXIT}$	Time that the transmitter drives LP-11	300			ns
	following a HS burst.				
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable	Time for Dn to		38	ns
	the HS line termination, starting from the	reach V _{TERM-EN}			
	time point when Dn crosses V _{IL,MAX} .				
T _{CLK-PREPARE}	Time that the transmitter drives the Clock	38		95	ns
	Lane LP-00 Line state immediately before				
	the HS-0 Line state starting the HS				
	transmission.				
T _{CLK-PRE}	Time that the HS clock shall be driven by the	8			UI
	transmitter prior to any associated Data				
	Lane beginning the transition from LP to HS				
	mode.				
T _{CLK-PREPARE}	T _{CLK-PREPARE} + time that the transmitter drives	300			ns
+ T _{CLK-ZERO}	the HS-0 state prior to starting the Clock.				
T _{D-TERM-EN}	Time for the Data Lane receiver to enable	Time for Dn to		35ns	
	the HS line termination, starting from the	reach V _{TERM-EN}		+4*UI	
	time point when Dn crosses V _{IL,MAX} .				
T _{HS-PREPARE}	Time that the transmitter drives the Data	40ns + 4*UI		85 ns +	ns
	Lane LP-00 Line state immediately before			6*UI	
	the HS-0 Line state starting the HS				
	transmission				

T _{HS-PREPARE}	T _{HS-PREPARE} + time that the transmitter drives	145ns + 10*UI			ns
+ T _{HS-ZERO}	the HS-0 state prior to transmitting the Sync				
	sequence.				
T _{HS-TRAIL}	Time that the transmitter drives the flipped	60ns + 4*UI			ns
	differential state after last payload data bit of				
	a HS transmission burst				
T _{LPX(M)}	Transmitted length of any Low-Power state	50		150	ns
	period of MCU to display module				
T _{TA-SURE(M)}	Time that the display module waits after the	$T_{LPX(M)}$		2*T _{LPX(M)}	ns
, ,	LP-10 state before transmitting the Bridge	, ,			
	state (LP-00) during a Link Turnaround.				
$T_{LPX(D)}$	Transmitted length of any Low-Power state	50		150	ns
	period of display module to MCU				
T _{TA-GET(D)}	Time that the display module drives the		5*T _{LPX(D)}		ns
	Bridge state (LP-00) after accepting control				
	during a Link Turnaround.				
$T_{TA-GO(D)}$	Time that the display module drives the		4*T _{LPX(D)}		ns
, ,	Bridge state (LP-00) before releasing control				
	during a Link Turnaround.				
T _{TA-SURE(D)}	Time that the MPU waits after the LP-10	$T_{LPX(D)}$		2*T _{LPX(D)}	ns
	state before transmitting the Bridge state	>			
	(LP-00) during a Link Turnaround.				

4. Display RESET Timing Characteristics

Reset input timing

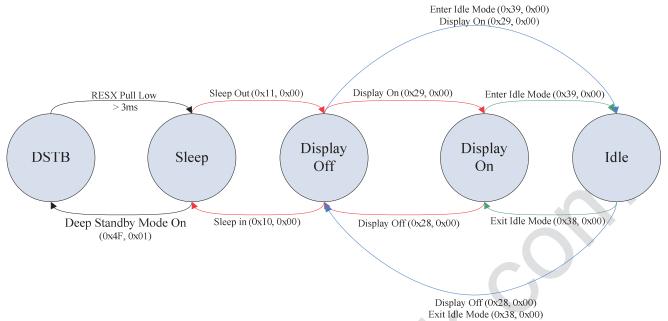
IOVCC=1.65 to 1.95V, VCI=2.8 to 3.2V, GND=0V, Ta=-20 to 70° C

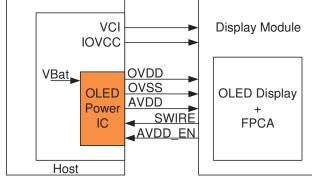

Timing Parameters

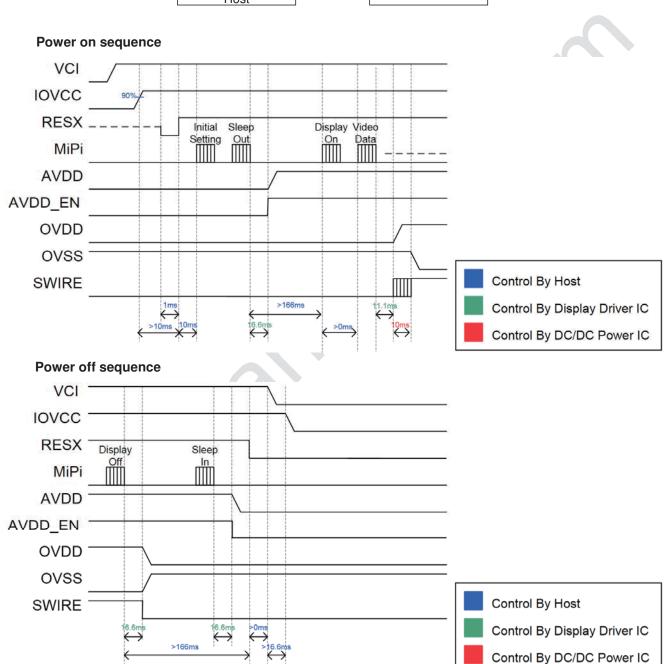
Symbol	Parameter	Related Pins	MIN	ТҮР	MAX	Note	Unit
t _{RESW}	*1) Reset low pulse width	RESX	10	-	-	-	μs
		-	-	-	5	When reset applied during Sleep in mode	ms
t _{REST}	*2) Reset complete time	-		-	120	When reset applied during Sleep out mode	ms

Note 1. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action		
Shorter than 5µs	Invalid Reset		
Longer than 10μs	Valid Reset		
Between 5μs and 10μs	Reset Initialization Procedure		


- Note 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset.
- Note 3. During Reset Complete Time, data in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.
- Note 4. Spike Rejection also applies during a valid reset pulse as shown below:


Note 5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.


5. Recommended Operating Sequence

State Diagram

Power Structure

Please follow AUO's main FPC design suggestion.

Timing settings of Green are controlled by display driver IC. (The settings couldn't be adjusted.) Timing settings of Red are controlled by DC/DC power IC. (The settings couldn't be adjusted.)

Initial Setting:

Item	Parameter Quantity		P0		
	Reference H381DLN01 Application Note				

Sleep Out:

Item	Parameter Quantity	Address	P0
1	1	0x11	0x00

Display On:

Item	Item Parameter Quantity Address		P0
1	1	0x29	0x00

Sleep In

Item	em Parameter Quantity Address		P0
1	1	0x10	0x00

Display Off:

Item	Parameter Quantity	Address	P0
1	1	0x28	0x00

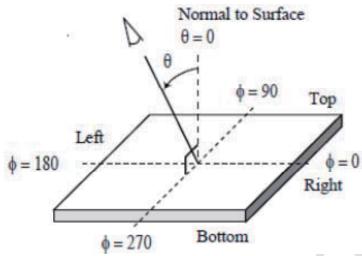
D. Optical Specification

All optical specifications are measured under typical condition. (Note 1)

Item		Abbr.	Min.	Тур.	Max.	Unit	Remark
Brightness		Y @ θ=0°	80	100		nits	
		@ θ=0°	3000				
Contrast ra	atio	@ θ=60°	900				
		@ θ=80°	480				Note 0
		Тор	80			Deg.	Note 2
Viewing ar	ngle	Bottom	80			Deg.	
(CR > 48	0)	Left	80			Deg.	
		Right	80			Deg.	
	Dod	х	0.640	0.670	0.700		
	Red	у	0.300	0.330	0.360		
	Green	Х	0.186	0.236	0.286		
Chromaticity		У	0.661	0.711	0.761		Note 3
(CIE1931)	Blue	Х	0.090	0.130	0.170		Note 3
	blue	у	0.025	0.065	0.105		
	White	х	0.28	0.30	0.32		
	vvriite	у	0.29	0.31	0.33		
Uniformi	ty	9 points	70			%	Note 4
Flicker					-30	dB	Note 5
Crosstalk					4.0	%	Note 6
Life Tim	е	95% @ 25°C	100			hrs	Note 7
Response ⁻	Гime	25°C Between 10% & 90%			2	ms	For Reference

Please follow AUO's main FPC design suggestion.

If you don't follow the AUO's main FPC design suggestion, then optical performance is not guaranteed.



Note 1: Typical Condition

Optical characteristics should be measured at the **center area** of the display with **Konica Minolta CA-310** and at the ambient temperature = 25°C ±2°C and in the dark room.

Note 2: Viewing Angle & Contrast Ratio

The optical performance is specified as the driver IC located at $\phi = 270^{\circ}$.

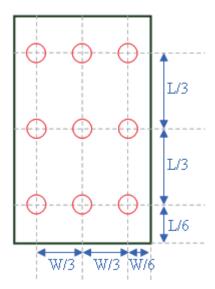
Contrast ratio is calculated with the following formula:

Contrast ratio (**CR**) = Photo detector output when OLED is at "**White**" pattern

Photo detector output when OLED is at "**Black**"

Note 3: Chromaticity

Chromaticity of **R**, **G**, **B** pattern are measured at Gray Level "255". Chromaticity of **White** pattern are measured at Gray Level "255".



Note 4: Uniformity

Global LCD Panel Exchange Center

Uniformity under White (L255) pattern =

minimum luminance of 9 maximum luminance of 9

Note 5: Flicker

Suggested Instruments: Konica Minolta CA-310

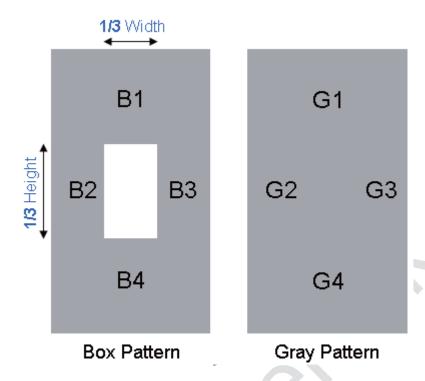
Measuring Point: Center point of 128th gray

The flicker level is defined using Fast Fourier Transformation (FTT) as follows:

Flic ker =
$$20 \log_{10} \left(2 \frac{f_{FFTC}(n)}{f_{FFTC}(0)} \right) + FS(Hz)$$
 (dB)

where fFFTC(n) is the nth FFT coefficient, and fFFTC(0) is the 0th FFT coefficient which is DC component. FS (Hz) is the flicker sensitivity as a function of frequency. The flicker level shall be measured with the test pattern in below.

Test Pattern: L128 Gray



Note 6: Crosstalk

Crosstalk shall be calculated by the luminance of **B1~B4** and **G1~G4** in the patterns shown below.

Box Pattern: **L128** gray level background with a **L255** White window in the central area.

Gray Pattern: L128 gray level background only.

Crosstalk

$$\equiv Maximum: \left\{ \frac{|B1 - G1|}{G1}, \frac{|B2 - G2|}{G2}, \frac{|B3 - G3|}{G3}, \frac{|B4 - G4|}{G4} \right\} \times 100\%$$

Note 7: Life Time

OLED life time is defined by the **Minimum Duration Time** that the luminance is decayed to a specific ratio (ex. **95%**) of initial state.

Test Pattern under duration period: L255 White

E. Reliability Test Items

In the standard condition, there should **not** be any display function NG issue occurred during the reliability test and the performance is confirmed after panel is left at room temperature. All the cosmetic specifications are judged only **before** the reliability stress.

No.	Test items	Conditions		Remark
1	High Temperature Storage	T= 80°C	100Hrs	
2	Low Temperature Storage	T= -40°C	100Hrs	
3	High Temperature Operation	T= 70°C	100Hrs	Note 1
4	Low Temperature Operation	T= -20°C	100Hrs	
5	High Temperature & Humidity Operation	T= 60°C . 90% RH	100Hrs	
6	Thermal Shock	-30°C ~ 80°C, 30 cycle, 1Hrs/cycle		Non-operation
7	Electrostatic Discharge	Contact = ± 4 kV, Class B Air = ± 8 kV, Class B		Note 2
8	Vibration (With Carton)	1.5Grms, 10~200Hz Total time: 90 mins (30 mins/axis for X, Y, Z)		
9	Drop (With Carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces		

Note 1: T = Ambient Temperature

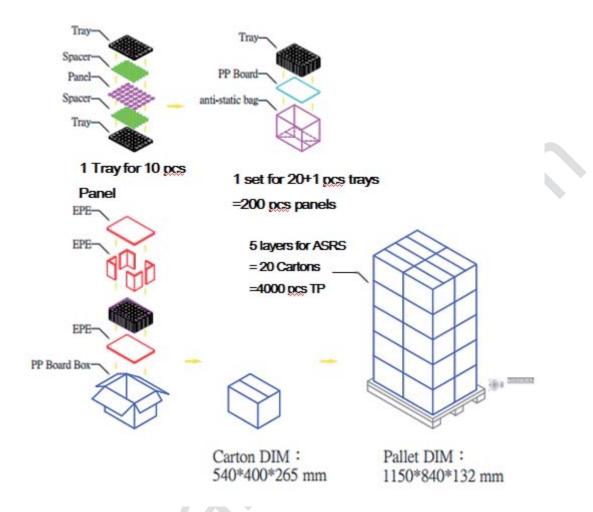
Please follow AUO's main FPC design suggestion.

If you don't follow the AUO's main FPC design suggestion, then reliability items are not guaranteed.

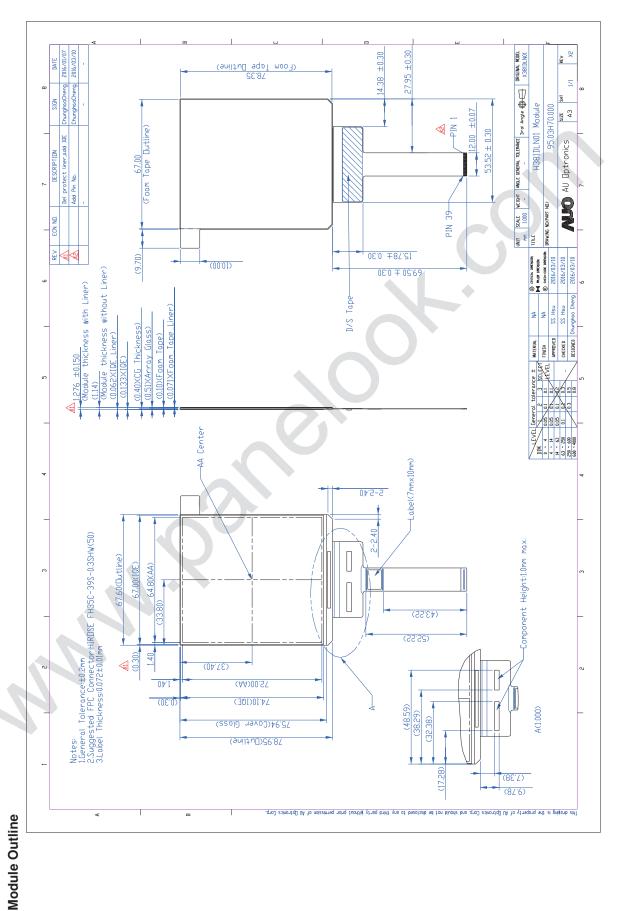
Note 2: All test techniques follow IEC 61000-4-2 standard.

Test Condition		
Pattern		
Procedure & Set-up	Contact Discharge : 330 Ω , 150pF, 1sec, 5 point, 10 times/point Air Discharge : 330 Ω , 150pF, 1sec, 5 point, 10 times/point	

	Emz	
Criteria	Class B – Some performance degradation allowed.	
Ontona	No data lost. Self-recoverable hardware failure.	
Othore	1. Air Discharge: Gun to Panel Distance>1cm	
Others	2. No MiPi D-PHY command, keep default register settings.	


F. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module within the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period; otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Display surface never likes dirt or stains.
- 10. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 11. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 12. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 13. Acetic acid or chlorine compounds are not friends with TFT display module.
- 14. Static electricity will damage the module; please do not touch the module without any grounded device.
- 15. Do not disassemble and reassemble the module by self.
- 16. Be careful do not touch the rear side directly.
- 17. No strong vibration or shock. It will cause module broken.
- 18. Storage the modules in suitable environment with regular packing.
- 19. Be careful of injury from a broken display module.
- 20. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.



G. Packing Information

Packing Form

H. Outline Dimension

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.